
Three-dimensional ray tracing in spherical and
elliptical generalized Luneburg lenses for
application in the human eye lens
J. E. GÓMEZ-CORREA,1,3,* V. COELLO,1 A. GARZA-RIVERA,2 N. P. PUENTE,3 AND S. CHÁVEZ-CERDA2,4

1Centro de Investigación Científica y de Educación Superior de Ensenada, Unidad Monterrey, Alianza Centro 504, PIIT Apodaca,
Nuevo León 66629, Mexico
2Instituto Nacional de Astrofísica, Óptica y Electrónica, Luis Enrique Erro No.1, Tonantzintla, Puebla 72840, Mexico
3Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica, Avenida Universidad s/n.
Ciudad Universitaria San Nicolás de los Garza, Nuevo León C.P. 66451, Mexico
4Centro de Investigaciones en Optica, Loma del Bosque 115, León, Gto. 37150, Mexico
*Corresponding author: jesusg@cicese.mx

Received 24 November 2015; revised 25 January 2016; accepted 9 February 2016; posted 10 February 2016 (Doc. ID 254514);
published 10 March 2016

Ray tracing in spherical Luneburg lenses has always been represented in 2D. All propagation planes in a 3D
spherical Luneburg lens generate the same ray tracing, due to its radial symmetry. A geometry without radial
symmetry generates a different ray tracing. For this reason, a new ray tracing method in 3D through spherical and
elliptical Luneburg lenses using 2D methods is proposed. The physics of the propagation is shown here, which
allows us to make a ray tracing associated with a vortex beam. A 3D ray tracing in a composite modified Luneburg
lens that represents the human eye lens is also presented. © 2016 Optical Society of America
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1. INTRODUCTION

The most famous lens with a gradient refractive index (GRIN)
is the spherical Luneburg lens. This lens was introduced in
1944 by Rudolf K. Luneburg in the book Mathematical
Theory of Optics [1]. A Luneburg lens is a GRIN lens with
spherical geometry with a normalized unitary radius and stig-
matic properties, which focus a sphere into a sphere [2]. As a
particular example, Luneburg solved the problem for incident
rays, at the anterior surface, coming from infinity (infinite
sphere), thus focusing at the opposite side surface of the spheri-
cal lens (sphere with radius r � 1). The Luneburg lens is a
remarkable optical lens because it is an aberration-free lens.

In telecommunications, it is difficult to apply the spherical
Luneburg lens in any practical antenna system due to its large
spherical shape. For this reason, a transformation that reduces
the profile of the original Luneburg lens without affecting its
unique properties [3,4] has been recently proposed. The new
transformed slim lens is then discretized and simplified for
practical antenna applications [3].

The spherical Luneburg lens and the ellipsoidal Luneburg
lens have been designed experimentally using Polymeric nano-
layered materials. The first lens is presented as a developing
application of the nanolayered polymer technology [5], and

the second lens is used to model a human eye lens using the
anterior and posterior shapes [6] because this lens is considered
an asymmetric GRIN lens.

Many generic expressions for the refractive index based on
biometric data of animal and human lenses have been proposed
over the years, which provide a good estimation of the actual
GRIN distribution [7–9]. In some models, the anterior and pos-
terior faces are considered to be symmetric [7], while, in more
recent models, a realistic asymmetry of the faces is taken into
account [8,9]. In the latter, the GRIN is described by two differ-
ent equations with respect to a plane or a curved surface that
intersects the human lens at its equator [8–10]. A drawback is
that a ray (or its derivative) traveling in the proposed GRIN dis-
tribution may undergo a discontinuity at any of such surfaces.

It has been demonstrated that the human eye lens could be
represented as a lens based on the gradient-index Luneburg
lens and composed of two oblate half-spheroids of different
curvatures that have continuous isoindicial contours and that
incorporate curvatures and which are similar to those found in
a human lens. This lens was called a composite modified
Luneburg (CML) lens [11].

The human eye lens and the Luneburg lenses can be studied
using geometrical optics, but, to the best of our knowledge, ray
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tracing methods have only been performed in 2D, and the ray
tracing is along the sagittal plane of these lenses [4,8,11–15].

It is possible to perform ray tracing in 3D in Luneburg
lenses or in GRIN lenses using commercial optical design soft-
ware. Unfortunately, for some users, they are like a black box. It
is common to think that, by using entry parameters, a correct
simulation could be performed, but the physics inside the
lenses that generate the ray tracing is not clear. In more com-
plicated cases, it is necessary to know the physics of the problem
to obtain a better explanation of the solution.

An example of a complex problem is the human eye lens.
This lens has been studied in 2D using commercial software
[8,12]. However, for 3D ray tracing, it is necessary to know
the physics of the ray path because the human eye lens is
not symmetrical, and a better analysis could be made.

In this paper, ray tracing and its physical explanation in 3D
of the spherical and elliptical Luneburg lenses based on the
well-known methods in 2D are presented. Thus, using the pro-
posed method, 3D ray tracing in a CML lens that represents
the human eye lens is also presented.

2. SPHERICAL LUNEBURG LENS: 3D
GEOMETRY OF THE GRIN DISTRIBUTION AND
3D RAY TRACING

The index in the spherical Luneburg lens is described as a func-
tion of n�r� where r �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � y2 � z2

p
and x, y, and z are

Cartesian coordinates. This function represents a refractive in-
dex that is constant in concentric spherical shells, i.e., each shell
has a thickness of dr (dr → 0), and, in this thickness, the re-
fractive index is constant. The smallest sphere has the highest
refractive index, and this value decreases from the inner shell to
a shell of radius a (this last shell is the surface of the lens)
(see Fig. 1).

If we assume that the GRIN distribution in the spherical
Luneburg lens has rotational symmetry around of the z axis,
we can define ρ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 � z2

p
where ρ is the projection of r

in the y–z plane. This plane is defined as the sagittal plane
of the spherical Luneburg lens, and its GRIN distribution is
given by n�ρ�. The function n�ρ� implies that the GRIN dis-
tribution is not spherical where the refractive index is constant,

which means that the GRIN distribution is composed of circles
with a constant refractive index.

The sagittal plane is represented by the red circle in Fig. 2.
From this plane, it is possible to generate the GRIN distribu-
tion n�r�, if we make a rotation of ϕr � 2π radians of the sag-
ittal semiplane given by y > 0 with respect to the z axis or if we
make a rotation of βr � 2π radians of the sagittal semiplane
given by z > 0 with respect to the y axis, where ϕr and βr
are representing the rotation angles with respect to the z
and y axis, respectively, as shown in Fig. 2. The GRIN distri-
bution of the sagittal semiplane acts as a solid of revolution; the
semicircles rotation generates a spherical GRIN distribution.

Without losing generality, both n�r� and r could be normal-
ized with respect to the maximum value of n�r�, and r, i.e.,
with respect to n�a� and a, respectively. The values of the
GRIN distribution and the radius on the surface of the sphere
are the unit [14].

The ray paths along a GRIN distribution of spherical sym-
metry could be described by means of the Eikonal equation,
which is given in terms of the polar and radial coordinates as�

∂ψ
∂r

�
2

� 1

r2

�
∂ψ
∂θ

�
2

� n2�r�; (1)

where the surfaces ψ � constant are associated with the optical
wavefronts. This Eikonal equation could be solved using sep-
aration of variables, and, to obtain an equation describing any
ray, it is necessary to apply the Jacobi theorem to the solution
because the solution of Eq. (1) describes the optical wavefronts,
and the polar equation of any ray could be written in terms of
a single equation given by

θs − θi � �K
Z

r

r0

dr

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2�r�r2 − K 2

p ; (2)

where �r0; θi� are the coordinates of the point of a ray entry into
the lens, as shown in Fig. 3, and K is the separation constant.
The expression for K could be found by calculating the deriva-
tive of Eq. (2) with respect to the radial coordinate, i.e.,

K � n�r�r sin φ: (3)

In this expression, the angle φ is formed between the radial
vector and the tangent to the ray path [1] (see Fig. 3). The

Fig. 1. GRIN distribution in the spherical Luneburg lens. Fig. 2. Spherical Luneburg lens geometry.
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value of K could be obtained straightforwardly at the surface of
the lens:

K � n0r0 sin α0; (4)

where n0 is the refractive index value on the surface of the lens,
and α0 is the angle formed by the ray with the optical axis (see
Fig. 3). Due to a normalization, this value has a variation from
0 to 1, i.e., 0 ≤ K ≤ 1.

From Eq. (4), it is possible to observe that, for each ray,
exists a unique value of K . This value remains constant along
the ray path [16–18].

The expression given by Eq. (3) is known as the generalized
Snell law for inhomogeneous media, and its values determine
the optical path of each ray. This demonstrates that the paths of
rays in a medium with gradient index n � n�r� are planar
curves, situated in a plane through the origin because K is
always a constant with a positive or negative sign, and there is
no sign change along the ray [19]. This plane is defined as the
ray propagation plane.

The last paragraph is important because it gives us the idea
of how to make a 3D ray tracing inside a lens with a GRIN
distribution given by n � n�r�. It also gives us the idea of the
technical difficulties that are present in 2D and 3D ray tracing.
In 2D ray tracing in Luneburg lenses, the technical difficulties
are reduced to knowing the value of the constant K for each
incident ray, which depends on the entry point in a single
plane; in this case, it is in the propagation plane. However,
in 3D ray tracing, the technical difficulties are tripled compared
with 2D ray tracing. It is necessary to know which is the propa-
gation plane for an incident ray; thus, it is crucial to find the
value of the constant K in each propagation plane for any in-
cident ray. These parameters depend on the incident ray direc-
tion. It is necessary to know if it is a meridional ray or if it is not
a meridional ray (skew ray). For this reason, it is necessary to
know the propagation plane; therefore, we will have to charac-
terize it in the following paragraphs.

Ultimately, 3D ray tracing is necessary to define an entry
point of a ray into the lens in 3D. This point is given by
PiL � �riL; θiL;ϕiL�, where (r, θ, and ϕ) are spherical coordi-
nates in the x–y–z reference frame. From Fig. 4, it could be
observed that the entry ray is on the surface of the sphere.
This implies that riL � 1, so the entry point is reduced
to PiL � �1; θiL;ϕiL�.

At this point, the entry point of the ray in the sphere has
been defined, but the ray propagation plane has not yet been
specified. This plane is easier to find, if a new point inside of the
sphere is located. Three points on the ray propagation plane
will be given, and, with these three points, a normal vector
to the plane that fully defines the ray propagation plane could
be found. This point is defined in the xy plane when the
incident ray is extended to this plane. The point is represented
as PcL in Fig. 4, and its coordinates are given by PcL � �rcL; π∕
2;ϕcL�. It is important to say that the extension of the ray’s
extension inside the lens is not the ray propagation in a medium
with gradient index n � n�r�, the extension is only to define
the ray propagation plane.

With the points O, PcL, and PiL, a normal vector to the ray
propagation plane in spherical coordinates could be found.
This is shown by

n⃗ �
�
π

2
ϕiL − ϕcLθiL

�
r̂ � �ϕcL − rcLϕiL�θ̂�

�
rcLθiL −

π

2

�
ϕ̂;

(5)

where r̂, θ̂, and ϕ̂ are the unit vectors in spherical coordinates.
Using this normal vector, this plane could be represented as�
π

2
ϕiL − ϕcLθiL

�
r � �ϕcL − rcLϕiL�θ�

�
rcLθiL −

π

2

�
ϕ � d ;

(6)

where d � �π2ϕiL − ϕcLθiL�rcL � �ϕcL − rcLϕiL�θcL � �rcLθiL−
π
2�ϕcL, and it is a constant.

The ray propagation plane for any ray is expressed by
Eq. (6), and the gradient index is given by n�r�. This is enabled
by the spherical geometry of the Luneburg lens because any
plane passing through the origin will have this gradient index.

In Fig. 3, the point P0 represents the coordinates where the
source point (object point) is placed. This point is placed at the
optical axis of the lens. It is important to say that Eq. (6) allows
us to find any propagation plane for any incoming ray from a
source point placed at any point of the 3D space. If the point is
placed at the optical axis, the propagation plane is easily found
for each ray because the propagation planes are defined by the
two parameters given in Fig. 2, and its values are

Fig. 3. Luneburg lens showing the geometric parameters of the ray
path.

Fig. 4. Luneburg lens showing the geometric parameters of the 3D
ray path.
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ϕr � ϕcL

βr � 0: (7)

As the propagation plane is known, it is possible to make the
3D ray tracing with a 2D method because the 3D problem is
transformed into a 2D problem using the idea that the rays in a
medium with gradient index n � n�r� are planar curves situ-
ated in a plane through the origin [19]. It could be observed
that the points O, PcL, and PiL were only used for the calcu-
lation of the propagation plane. And, with this analysis of the
propagation plane, one technical difficulty was solved. The
problem of knowing which is the value of the constant K
was solved using Eq. (4). Thus, the difficulty of the direction
of the rays in this section is not necessary to solve because the
classical Luneburg lens has a spherical symmetry. But, in the
next section, an analysis of the ray direction is made, due to
elliptical symmetry of the Luneburg lens.

Let us create examples using this theory; thus, it will be con-
sidered that the point P0 is placed at the optical axis because it is
one of the principles of the Luneburg lens. The first example is
the classical spherical Luneburg lens. If the rays are propagating

in a GRIN distribution of n�r� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − �ra�2

q
and the entry

parameters shown in Fig. 3 are given by α0 � 0 and r0 � 1,
the parameter α0 � 0 thus implies that the point P0 is placed at
infinity. The parameter θi has the same value for each ray on
its propagation plane.

Three-dimensional ray tracing in the classical spherical
Luneburg lens is shown in Fig. 5(a). The rays outside the lens
are represented in red, and the rays inside the lens are repre-
sented in blue. Figure 5(b) represents the 3D ray tracing pro-
jection in the sagittal plane, and Fig. 5(c) represents 2D ray
tracing in the same plane.

In Fig. 5(b), it could be expected to see that all the rays com-
ing from infinity are entering the lens along the anterior section
of a circle, as is shown in Fig. 5(c) (red circle), but this is not
possible because, in Fig. 5(b), the rays are entering in different
planes, and only the rays represented with dashed lines are

entering in the sagittal plane. In Fig. 5(c), all rays are entering
in the sagittal plane along the anterior section of the red circle.

The second and last example in this section is when the ray
tracing for a generalized spherical Luneburg lens is performed.
In this example, point P0 is placed at a different distance from
infinity and point P1 is different to 1. In this case, it is necessary
to modify the gradient refractive index because the geometry of
the lens is the same as that in the first example [4,11].

In this example, the entry parameters are given by P0 � 5
and r0 � 1. If all rays should be focused at the point
P1 � 1.37, the refractive index must be

n�r� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1.8 −

�
r
a

�
2

s
; (8)

which ranges from 1.3416 in the center to 1 in the surface of
the sphere. The 3D ray tracing of the generalized spherical
Luneburg lens is shown in Fig. 6; thus, it could be observed
that all rays are practically focused on the image plane at a dis-
tance of 1.37 units from the center of the sphere.

3. ELLIPTICAL LUNEBURG LENS: 3D
GEOMETRY OF THE GRIN DISTRIBUTION AND
3D RAY TRACING

From the spherical Luneburg lens, it is possible to make a linear
transformation and to obtain the elliptical Luneburg lens with-
out affecting its unique properties [3,4,11].

The index in the spherical Luneburg lens is described by
Eq. n�r�, but if symmetry around the y axis is assumed, then
the desired elliptical shape could be obtained when the radius is
defined as

r �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1

s
x
�

2

� y2 �
�
1

s
z
�

2
s

; (9)

where s is a constant and the 3D GRIN distribution in the
elliptical Luneburg lens is given by

n�r� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 −

��
1

s
x
�

2

� y2 �
�
1

s
z
�

2
�s
; (10)

Fig. 5. 3D ray tracing in the classical spherical Luneburg lens.
(a) The observation angle allows us to observe the 3D ray tracing.
(b) The 3D ray propagating is observed on the sagittal plane.
(c) 2D ray tracing in the sagittal plane.

Fig. 6. 3D ray tracing in the generalized spherical Luneburg lens.
The 3D ray propagation is observed on (a) an angle that allows us to
observe the 3D ray tracing and (b) the sagittal plane (zy plane).
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where this function represents a refractive index that is constant
on concentric elliptic shells. The GRIN distribution on the sag-
ittal plane (yz plane) is shown in Fig. 7; in this case, x � 0 and

r is transformed as ρ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 � �1s z�2

q
.

The 3D GRIN distribution of the elliptical Luneburg lens
could be generated in two ways. The first is when a rotation of
βr � 2π radians of the sagittal semiplane given by z > 0 with
respect to the y axis is done, as is shown in Fig. 8. This is pos-
sible because, from the beginning symmetry, the y axis was con-
sidered. The second is when a rotation of ϕr � 2π radians of
the sagittal semiplane given by y > 0 with respect to the z axis
is made. In the case of the elliptical Luneburg lens, if only this
rotation is considered, the 3D GRIN distribution could not be
generated because the semimajor axis of the sagittal plane could
not be a constant due to the elliptical geometry of this lens.

In order to generate the GRIN distribution from this rota-
tion, it is necessary to define, in polar coordinates, a new func-
tion for the semimajor axis of sagittal plane that depends on ϕr .
The semimajor axis in each plane is represented by

ρV �ϕr� �
s 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s 02 cos2 ϕr � sin2 ϕr

p ; (11)

where s 0 � 1∕s and its variation is

1 ≥ ρV ≥ s 0: (12)

It is important to see that, when the sagittal plane is rotated in
the direction of the angle ϕr , the semiminor axis of this plane
(ρH ) remains constant and its value is ρH � s 0.

Using the values of ρH and ρV for each ϕr , it is possible to
know the change in the geometry of the sagittal plane when a
rotation with respect to the z axis is made. The variation of ϕr
given by 0 ≤ ϕr ≤ π∕2 implies that ρV �0� � 1 ≥ ρV �ϕr� ≥
ρH , i.e., the sagittal plane is losing its ellipticity when ϕr in-
creases until it becomes a circle with a radius equal to s 0 at
ϕr � π∕2, and the variation of ϕr from π∕2 to π implies that
ellipticity of the sagittal plane increases until it becomes in the
initial sagittal plane (ϕr � 0). Each plane is defined by

ρ�ϕr� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2V �ϕr�y2 � ρ2Hz

2

q
; (13)

and their GRIN distribution is given by

n�ρ�ϕr�� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − �ρ2V �ϕr�y2 � ρ2Hz

2�
q

; (14)

thus, with these two equations, it is possible to generate the
3D GRIN distribution of the elliptical Luneburg lens when
a rotation of the sagittal plane with respect to the z axis is done.

Equations (13) and (14) are important for the 3D ray trac-
ing because, if the source point is placed on the optical axis, it
could be said that the propagation planes are define by these
two equations.

The most general case is when the source point is placed
outside of the optical axis; in this case, the propagation planes
are described by

ρ�ϕr ; γr� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2V �ϕr�y2 � ρ2H �γr�z2

q
; (15)

where γr is the angle formed by the propagation plane and the
zx plane (see Fig. 8), and

ρH �γr� �
s 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s 02 cos2 γr � sin2 γr
p ; (16)

and their GRIN distribution is given by

n�ρ�ϕr ; γr�� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − �ρ2V �ϕr�y2 � ρ2H �γr�z2�

q
: (17)

Note that point P0 is placed at the optical axis in the same way
as in the spherical Luneburg lens (see Section 2). In the last
example of this section, a more general analysis will be made
using Eqs. (15) and (17), which represent the geometry and the
GRIN of each propagation plane, respectively, when the P0

point is placed outside the optical axis.
An excellent description of 2D ray tracing in elliptical

Luneburg lenses is given in [4]. In this paper, a similar pro-
cedure is described, but it is modified accordingly to the propa-
gation in 3D and the desired geometry.

Fig. 8. Elliptical Luneburg lens geometry.

Fig. 7. GRIN distribution in the sagittal plane of the elliptical
Luneburg lens.
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It is considered, in the first two examples of the 3D ray trac-
ing in this section, that the source point is placed on the optical
axis. The first example is when the parameters are given by
α0 � 0 and s 0 � 0.52. The parameters θi and r0 have different
values for each ray on different propagating planes, and its re-
lationship with the ray in the sagittal plane is given by θi�ϕr� �
ρV θi�0� and r0�ϕr� � ρV r0�0�.

Three-dimensional ray tracing in the elliptical Luneburg
lens is shown in Fig. 9(a). The chosen geometrical parameter
(s 0) and refractive index n�r� produce practically a perfect focus
at the image plane placed at a distance of 1.6 units from the
posterior surface of the lens. This image plane could be placed
at any point of the optical axis, if we choose the parameters α0,
s 0 and n�r� in an appropriate manner, i.e., the image plane will
depend on these parameters. This propagation could be con-
sidered a propagation in a generalized elliptical Luneburg lens
because the image plane is outside the lens.

In Figs. 9(b)–9(d), the frontal, sagittal, and tangential
propagation planes of the elliptical Luneburg lens could be
observed, respectively. The principal difference between the
sagittal plane and tangential plane is the geometry of the propa-
gation planes. The first plane has an elliptical geometry, and the
second has a circular geometry [see Figs. 9(c) and 9(d), respec-
tively]. In Fig. 9(a), it seems that Snell’s law is not fulfilled in
most exterior rays, but, in all rays, this law is satisfied, as can be
observed in Fig. 9(b). This problem is due to the observation
angle in the sagittal plane. In the tangential plane, it could be
thought that all the rays should be focused on the surface of
the lens because it has a circular geometry and has the same
gradient refractive index as that of the spherical Luneburg lens;
however, it must be remembered that the spherical Luneburg
lens in each plane has a radius that is equal to 1, and, in the
tangential plane, the radius is equal to s 0; for this reason, the
rays could not focus on the surface.

The second example is when point P0 is placed at P0 � 5;
thus, P1 � 1.64 and s 0 � 0.44 imply that the gradient refrac-
tive index in each plane is given by

n�ρ�ϕr�� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2.65 − �ρ2V �ϕr�y2 � s 02z2�

q
; (18)

where the refractive index is varies from 1.6279 to 1. The 3D
ray tracing in this media is shown in Fig. 10; thus, it is possible
to observe that this media represents a generalized elliptical
Luneburg lens because it keeps the unique properties of the
Luneburg lens.

In both examples in this section, the set of incident rays on
the lenses come from point P0. The position of this point is
different for each example, but both points are placed on
the optical axis. If point P0 is not placed in the optical axis,
the entry rays on the ellipse are skew rays. For this reason,
an important example to consider is when point P0 is placed
outside the optical axis.

One of the best examples of skew rays propagation in a
GRIN medium is the ray propagation inside a cylindrical wave-
guide with a parabolic refractive index, where the solution is
an extreme form of a skew ray, which is known as a helical
ray [18]. It is possible to think that the skew rays in an elliptical
Luneburg lens are propagated in the same way as the rays inside
a cylindrical waveguide with a parabolic refractive index. For
the analysis presented in this paper, the propagating rays inside
the lens are not skew rays because this lens is immersed in a
refractive index ns, where its value is equal to the value of
the refractive index on the surface of the lens. This refractive
index allows or does not allow the generation of the skew rays
inside of the elliptical Luneburg lens. For example, if the value
of the refractive index where the lens is immersed is different
from the value of the refractive index on the lens surface, an
incident skew ray on the lens generated a propagating skew
ray inside this lens due to an immediate refraction in the point
where the ray is incident on the lens. However, for the elliptical
Luneburg lens proposed in this paper, this refraction does not
occur because there is not a difference in the refractive index;
this allows the incident skew rays to choose only one propaga-
tion plane.

To the set of incident rays on the lenses shown in the
two examples of this section, it is possible to associate a plane

Fig. 10. 3D ray tracing in the generalized elliptical Luneburg lens
with P0 � 5. The 3D ray propagating is observed on (a) an angle that
allows us to observe the 3D ray tracing, (b) the sagittal plane (zy
plane), and (c) the tangential plane (zx plane).

Fig. 9. 3D ray tracing in the generalized elliptical Luneburg lens.
The propagating ray is observed in (a) an angle that allows the obser-
vation of the 3D ray tracing, (b) the Frontal plane (xy plane), (c) the
sagittal plane (zy plane), and (d) the tangential plane (zx plane).
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wavefront for the first example and a spherical wavefront for the
second example. A general example, where point P0 is placed
outside of the optical axis, is when a set of incident rays are
associated with an helical wavefront, i.e., the rays are associated
with a vortex beam. In this case, the rays are not coming from
only point P0, the rays are coming from different points of P0

placed at different points of the 3D space, and the entry rays on
the ellipse are skew rays, as shown in Fig. 11.

For the propagation in this example, it is necessary to use
Eqs. (15) and (17) because the entry rays are not meridional
rays. Note that the angle γr will take a different value for each
incident ray, due to the value of γr , which is the same value of
the inclination angle of each incident ray with respect to the zx
plane; for this reason, each ray has a different propagation
plane. If γr is known, then it is possible to know entry point
PiL on the surface of the elliptical Luneburg lens and the angle
ϕr . Thus, it could be calculated with the equations, and it is
possible to make the ray tracing of the incident skew rays inside
the elliptical Luneburg lens, as is shown in the Fig. 12.

Figure 12 shows the propagation of three rays associated
with a vortex beam. From this figure, it is possible to observe
that the rays are not focusing in a single point, but this does
not imply that the propagation is incorrect; this means that
the propagation is correct because the rays associated with
the vortex beam are coming from different points P0.

Using the 3D ray tracing proposed in this paper, it is pos-
sible to analyze the ray propagation of any rays associated with a
wavefront. The wavefront could be symmetric or asymmetric
with respect to any of the three axis; for example, an aberrated
wavefront could be analyzed. It is important to say that this
analysis could not be made using 2D methods.

4. 3D RAY TRACING IN A COMPOSITE
MODIFIED LUNEBURG MODEL OF
HUMAN EYE LENS

The imaging capabilities of the CML lens and the changes in
the gradient index profile were tested for five object distances,
for a fixed geometry, and for a fixed image distance in [11]. The

geometry proposed is defined by three shape parameters: the
radius of the lens measured on the frontal plane (R), the ante-
rior vertex (za), and the posterior vertex (zp) where zp > za, as
shown in Fig. 13(a). The value of these shape parameters used
in this model was reported in the literature by Rosen et al. in
[20], and the idea of representing the GRIN distribution of
the human eye lens as a GRIN distribution of the Luneburg
lens, to the best of our knowledge, is attributed to Zainullin
et al. in [21].

In the first case studied by Gómez-Correa et al. in [11],
the CML lens is immersed in a refractive index of 1.336,
which represents the aqueous humor of the human eye. The
corresponding lens parameters for the sagittal plane are
R � 4.4005 mm, za � 1.8215 mm, and zp � 2.5890 mm
(za∕zp � 0.7036), and the refractive index varies from
1.3998 in the center to 1.3709 in the surface of the CML lens.
The entry parameters are α0 � 0 and P1 � 63.05 mm.

To make the 3D ray tracing in the CML lens, it is necessary
to define the tangential plane. Figure 13(b) shows that this

Fig. 13. Geometric shape of the CML lens. Parameters za and zp
are different.

Fig. 12. Ray tracing of the associated rays to a vortex beam.

Fig. 11. Associated rays to a vortex beam.
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plane is composed by the anterior and posterior hemispheres.
The first is a semicircle with a radius of za, and the second is an
ellipse with semiminor axis of za and semimajor axis of zp. The
value of za in the semiminor axis was chosen to show that the
geometry of the CML lens in the tangential plane could be a
circle in the anterior hemisphere and a ellipse in the posterior
hemisphere. However, the value could be selected in different
way: for example, by experimental data.

Using these parameters, the 3D ray tracing in the CML lens
was performed, which is represented in Fig. 14(a). Ray tracing
in the sagittal and the tangential planes are shown in Figs. 14(b)
and 14(c), respectively. The rays have been cut because the
focusing distances of the rays are large compared with the size
of the CML lens.

In this propagation, it is possible to observe a difference
between the value of the refractive index immerse and the value
of the refractive index on the surface of the CML lens.
However, the propagating rays inside the CML lens are not
skew rays for two reasons: the first is due to point P0 placed
on the optical axis; the second is because the difference between
the values of the refractive indexes are very small, i.e., this dif-
ference is 0.0349. This value is important when point P0 is
placed outside the optical axis. The analysis for this case is com-
plicated by the generation of skew rays, and the geometry of
the CML lens. Only one case of the five cases studied in [11]
was presented, but it is possible to make 3D ray tracing of each
case using the method presented in this paper.

5. CONCLUSIONS

A new method and the physical explanation of 3D ray tracing
of generalized spherical and classical Luneburg lenses using 2D
methods were presented.

It was observed that ray tracing is the same in each propa-
gation plane in lenses with radial symmetry. This method takes
advantage when the lens does not have a radial symmetry and
also when the source point is placed outside of the optical axis
because the ray tracing is different in each propagation plane.
The physics of the problem have been analyzed in order to ex-
plain why, in the analysis presented in this paper, the skew rays

are not generated inside the elliptical Luneburg lens and the
basis for when the properties of the propagating rays as planar
curves are preserved.

The method proposed could be used for circular and ellip-
tical geometry or a composite of both with any gradient refrac-
tive index n�r� �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
nc − r2

p
, where

ffiffiffiffincp
is the refractive index

in the center of the lens. It is important to observe that the
procedure of the method presented here is first to define the
optics of the lenses and then to work out analytical ray tracing;
however, it is possible to make the inverse analysis, i.e., if the
ray tracing is known, then it is possible to find the optical char-
acteristics of the lens that allow us to make the proposed ray
tracing. An example of this is presented in [11] because the
imaging capabilities of the CML lens and the changes in the
gradient index profile are tested for five object distances, for
a fixed geometry, and for a fixed image distance, i.e., the geom-
etry of the lens and the object distance were known, and a
GRIN distribution could be found that allows the ray tracing
known for the object distance. Also, with this method, it is pos-
sible to fix the object distance to find a GRIN distribution and
to establish the geometry of the lens.
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analytical ray tracing through the generalized Luneburg lens,” Appl.
Opt. 31, 5167–5170 (1992).

14. J. R. Flores, “Gradient-index axicons with spherical symmetry,”
J. Mod. Opt. 46, 1513–1525 (1999).

15. J. M. Gordon, “Spherical gradient-index lenses as perfect imaging
and maximum power transfer devices,” Appl. Opt. 39, 3825–3832
(2000).

16. J. R. Flores, “Study of optical elements of gradient index with spherical
symmetry,” Ph.D. thesis (Universidade de Santiago, 1992).

17. S. P. Morgan, “General solution of the Luneburg lens problem,”
J. Appl. Phys. 29, 1358–1368 (1958).

18. V. Lakshminarayanan, A. Ghatak, and K. Thyagarajan, Lagrangian
Optics (Springer, 2001).

19. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of
Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge
University, 1978).

20. A. M. Rosen, D. B. Denham, V. Fernandez, D. Borja, A. Ho, F. Manns,
J.-M. Parel, and R. C. Augusteyn, “In vitro dimensions and curvatures
of human lenses,” Vis. Res. 46, 1002–1009 (2006).

21. R. G. Zainullin, A. B. Kravtsov, and E. P. Shaitor, “The crystalline lens
as a Luneburg lens,” Biofizika 19, 913–915 (1974).

2010 Vol. 55, No. 8 / March 10 2016 / Applied Optics Research Article


